rstats

getTBinR 0.5.5 now on CRAN - 2017 data.

getTBinR 0.5.5 is now on CRAN and should be available on a mirror near you shortly! This update is mainly about highlighting the availability of TB data for 2017, although some small behind the scenes changes were required to get the code set up going forward for yearly updates. A few more plotting options have been added, along with the corresponding tests (definitely the most exciting news). The full changelog is below along with a short example highlighting some of the changes in the 2017 data.

getTBinR 0.5.4 now on CRAN - new data, map updates and a new summary function.

getTBinR 0.5.4 is now on CRAN and should be available on a mirror near you shortly! This update includes an additional data set for 2016 containing variables related to drug resistant Tuberculosis, some aesthetic updates to mapping functionality and a new summarise_tb_burden function for summarising TB metrics. Behind the scenes there has been an extensive test overhaul, with vdiffr being used to test images, and several bugs fixes. See below for a full list of changes and some example code exploring the new functionality.

Exploring Tuberculosis Monitoring Indicators in England; Using Dimension Reduction and Clustering

Introduction I recently attended the Public Health Research and Science Conference, run by Public Health England (PHE), at the University of Warwick. I was mainly there to present some work that I have been doing (along with my co-authors) estimating the direct effects of the 2005 change in BCG vaccination policy on Tuberculosis (TB) incidence rates (slides) but it was also a great opportunity to see what research is being done within, and partnered with, PHE.

Exploring Estimates of the Tuberculosis Case Fatality Ratio - with getTBinR

This is a quick post exploring estimates of the case fatality ratio for Tuberculosis (TB) from data published by the World Health Organisation (WHO). It makes use of getTBinR (which is now on CRAN), pacman for package management, hrbrthemes for plot themes, and pathwork for combining multiple plots into a storyboard. For an introduction to using getTBinR to explore the WHO TB data see this post. It is estimated that in 2016 there was more than 10 million cases of active TB, with 1.

Explore Global Tuberculosis

A shiny app showcasing the functionality of getTBinR. It allows the exploration of the global burden of Tuberculosis. Any metric in the WHO data can be explored, with country selection using the built in map, and animation possible by year. Source code available here.

BIDD Modelling Course

The course practicals for the modelling infectious disease short course `run by BIDD at the University of Bristol. Source code available here.

Explore Infectious Disease Models

This shiny app has been developed to allow the exploration of the parameter space of compartmental infectious disease models. It is designed to be used as a teaching aid when introducing people to the concepts behind infectious disease models without requiring them to interact with the underlying code. A number of infectious disease models are included, such as a Susceptible, Exposed, Infected, Recovered model. Source code available here.

Exploring Global Trends in Tuberculosis Incidence Rates - with GetTBinR

In November I attended Epidemics, which is a conference focused on modelling infectious diseases. There was a lot of great work and perhaps most excitingly a lot of work being offered as R packages. I’ve recently begun wrapping all my analytical work in R packages, as it makes producing reproducible research a breeze! Unfortunately all of this work is still making it’s way towards publication and for a variety of reasons can’t be shared until it has passed this hurdle.

Show Me Perseus

A shiny app to remove potential friction for new R users when using the R perseus package. Source code available here.

getTBinR

Quickly and easily import analysis ready TB burden data, from the World Health Orgnaisation (WHO), into R. The aim of the package is to speed up access to high quality TB burden data, using a simple R interface. Generic plotting functions are provided to allow for rapid graphical exploration of the WHO TB data. This package is inspired by a blog post, which looked at WHO TB incidence rates. See here for the WHO data permissions.